
Distributing MCell Simulations
on the Grid

Henri Casanova
�

casanova@cs.ucsd.edu
Tom Bartol

�

bartol@salk.edu
Joel Stiles

�

stiles@psc.edu
Francine Berman

�

berman@cs.ucsd.edu

Abstract

The Computational Grid [21] is a promising platform
for the deployment of large-scale scientific and engineering
applications. Parameter Sweep Applications (PSAs) arise
in many fields of science and engineering and are structured
as sets of “experiments”, each of which is executed with a
distinct set of parameters. Given that structure, PSAs are
particularly well suited to the Grid infrastructure and can
be deployed on very large scales.

However, deployment is not easy to achieve for the do-
main scientist given the complexity and multiplicity of the
Grid software infrastructure, the heterogeneity of the re-
sources, and the dynamic resource availabilities. It is there-
fore necessary to provide user-level middleware that acts
as an intermediate layer between the application and the
Grid. That middleware must address all deployment, data
movements, and scheduling issues to provide the user with a
transparent way of running his/her simulation on the Grid.

In this paper we focus on such middleware specifically
targeted to a biology application: MCell. After describing
the application and its structure, we describe desired us-
age scenarios on the Grid. We identify user requirements,
discuss relevant computer science issues and propose suit-
able solutions given currently available Grid technologies.
We then describe a general user-level middleware project
for PSAs, APST, explain how it can be extended in order to
accommodate MCell’s specific requirements, and introduce
current work in that direction.

1. Introduction

Advances in networking technologies have made it pos-
sible to aggregate CPU, network and storage resources into
Computational Grids [21, 28]. Such environments can be

�
CSE Dept., University of California, San Diego�
Computational Neurobiology Laboratory, Salk Institute�
Biomedical Applications Group, Pittsburgh Supercomputing Center

used effectively to support large-scale runs of distributed
applications. A particularly important class of grid ap-
plications are science and engineering simulations, many
of which can be structured as loosely coupled Parameter
Sweep Applications (PSAs) [1, 7, 27, 41, 51]. PSAs are
typically structured as sets of “experiments”, each of which
is executed with a distinct set of parameters. Popular exam-
ples are parameter-space searches and Monte-Carlo simu-
lations. More specifically, we define a PSA as a (large) set
of “independent ” tasks, meaning that there is no, or little,
task precedence rules. This paper focuses on MCell, a biol-
ogy application which fits the PSA model and is described
in detail in Section 2.

There are many technical challenges involved when de-
ploying large-scale applications over a distributed comput-
ing environment. Although PSAs exhibit a simple struc-
ture, we will see that efficient scheduling must be em-
ployed in order to co-locate computation and data (which
must be staged appropriately for good performance) in dy-
namic environments. Previous work [10, 44, 9] has demon-
strated that run-time, adaptive scheduling is a fundamental
approach for achieving performance in the context of the
Grid. The development of user-level middleware [15] that
addresses the computer science issues and targets the effi-
cient deployment and scheduling of large-scale PSAs would
be of great value for scientific and engineering community.
In this paper we focus on such middleware in the specific
context of the the MCell application.

This paper is organized as follows. Section 2 describes
MCell, its current implementation, and details requirements
for running large-scale MCell simulations. Section 3 iden-
tifies the computer science issues in meeting the aforemen-
tioned requirements and proposes a number of solutions.
Section 4 describes current work being done as part of
APST, a user-level middleware software project targeted to
PSAs. Finally, Section 5 highlights related work and Sec-
tion 6 concludes the paper.



2. MCell: Application and Requirements

2.1. MCell Overview

MCell [29, 30, 50, 47] stands for ”Monte Carlo cell” or
“MicroCellular physiology”. In general MCell uses Monte
Carlo algorithms to simulate simultaneous diffusion and
chemical reactions of molecules in complex 3-D spaces.
Highly realistic reconstructions of cellular or subcellular
boundaries can be used to define the 3D diffusion space(s),
which then can be populated with molecules of different
kinds [48]. Such molecules might react with others that
are released periodically from different locations within
the structure, to simulate the production of biological sig-
nals. The diffusing molecules move according to a 3-D ran-
dom walk that recapitulates net displacements arising from
Brownian motion during time-step intervals. During each
”walk”, possible reaction events such as binding and un-
binding are tested on a molecule-by-molecule basis using
random numbers and Monte Carlo probability values [46].
Section 2.2 provides an example of MCell’s use for quanti-
tative simulations of synaptic transmission.

In an MCell simulation, molecular diffusion and re-
actions are modeled using a stochastic treatment of phe-
nomenological rates, and the simulation time-step can of-
ten be on the microsecond scale for signals lasting from
milliseconds to seconds. MCell methods and algorithms
thus are positioned “above” those of molecular dynam-
ics, which compute atomic forces of interaction to pre-
dict detailed structure and function of single molecules,
and which generally require a time-step on the femtosec-
ond scale. On the other hand, MCell simulations are sit-
uated “below” models that compartmentalize whole cells
(or groups of cells) and simulate processes within and in-
teractions between compartments by using coupled sets of
differential equations. Important distinguishing features of
MCell simulations therefore include the development and
use of highly realistic 3-D biological structures, and real-
istic movements and interactions of individual molecules
within the structures. Since decisions underlying molecular
events are made using random numbers and probabilities,
the simulation results accurately reflect biological “noise”
that may have functional consequences and can show a
complex dependence on space and time.

In essence, then, computational modeling with MCell
encompasses four steps, each of which can require consid-
erable computing resources:

1. Surface design or reconstruction.
In simple cases, a plane or small set of planes might
be used to define diffusion boundaries. In complex
cases, cell membranes can be reconstructed as tessel-
lated meshes from electron microscope data, and may
contain on the order of 106 triangles.

2. Model visualization and design.
A set of surfaces is only the starting point for a realis-
tic model, since different types of molecules must be
added to the surfaces and spaces according to realistic
biological distributions and densities. The total num-
ber of molecules is highly variable but can easily reach
or exceed 106 even for a surface area or reaction vol-
ume much smaller than a single cell. It may also be
of interest to alter the surfaces and/or molecular dis-
tributions in some systematic or arbitrary way, e.g., to
simulate the pathogenesis of a disease that perturbs one
or more aspects of subcellular organization.

3. Simulation of the signal or metabolic process.
Often this step involves some form of parameter
sweep. In one scenario, simulations are repeated for
different values of one or more input parameters, to
define how one or more output values change with
the changing inputs. In another scenario, simulations
are repeated with input parameters varied according to
some approximate fitting scheme, so that output val-
ues ultimately match (within some confidence range)
a corresponding set of experimental target measure-
ments. In either case, a particular set of input param-
eters may need to be used in multiple simulations run
with different streams of random numbers, in order to
quantify the predicted noise and/or reduce it by av-
eraging the output results. As discussed in more de-
tail in Section 2.3, the total number of simulations re-
quired for present modeling projects typically ranges
anywhere from 102 to 105 and beyond.

4. Visualization and analysis of results.
In the simplest case this might be a 2-D plot of one
output parameter as a function of time. In the more
typical case, some combination of 2-D plotting and 3-
D imaging and/or animation is required to visualize the
simulated signal’s evolution in time and space, as well
as multi-dimensional relationships between input and
output parameters.

Typical events that may occur during each time-step of
an MCell simulation include:

� the release of diffusing molecules from some structure
defined by a surface,

� random walk movements for diffusing molecules,

� encounters between diffusing molecules and reflective,
transparent, or absorptive surfaces,

� creation of new diffusing molecules at some point or
points in space,

2



� chemical reaction transitions undergone by single
molecules or two molecules that encounter each other
during diffusion,

� counting of molecules and reaction transitions in vari-
ous time- and space-dependent ways, and

� output of surface and molecule information for visual-
ization.

At present, all simulation objects and run-time conditions
are specified using a high- level Model Description Lan-
guage (MDL) designed for readability by scientists. When
a simulation is run, one or more MDL input files are parsed
to create the simulation objects, and then execution begins
for a specified number of time-step iterations.

Each time that a diffusing molecule makes a random
walk movement, its trajectory must be traced to determine
whether it intersects with another object before reaching the
anticipated endpoint of motion. If an intersection does oc-
cur, a random number is used to decide between all possible
events, and then the search for collisions along the origi-
nal or modified trajectory must continue as necessary. This
process of marching along a trajectory and making deci-
sions accounts for most of the computer time required for
the simulation.

To optimize the search for intersections, the simulation
space can be divided into subvolumes, each of which con-
tains only a small number of objects (under optimal con-
ditions, subject to memory limitations). By searching and
traversing subvolumes rather than the total space during
each time-step, the computer time required for a simulation
can be nearly independent of the model’s spatial complex-
ity. For large- scale models the effective speed-up amounts
to many orders of magnitude, e.g., the difference between
minutes and weeks. In the absence of such run-time opti-
mizations, MCell simulations of realistic structures would
routinely require tightly coupled processing on massively
parallel architectures. With such optimizations, however,
simulation conditions are often loosely coupled or embar-
rassingly parallel, so that Grid-based computation becomes
eminently feasible.

2.2. MCell Simulations of Synaptic Transmission

Nerve cells communicate with themselves and other
cells at structures called synapses. The synapse itself is de-
fined by a presynaptic cell in which the signal originates, a
postsynaptic cell to which the signal must be transmitted,
and an intervening gap, or synaptic cleft. The signal is car-
ried by thousands of small neurotransmitter molecules (e.g.,
amino acid molecules) that are released in discrete packets
from the presynaptic cell, diffuse across and within the cleft,
and activate postsynaptic receptor molecules (typically one

or more varieties of protein molecules). Activation of the
receptors initiates a tiny electrical and/or chemical signal
that can be measured experimentally.

The synaptic cleft is simply a specific region of the ex-
tracellular space that surrounds and separates all cells from
each other. In some cases the cleft architecture is relatively
simple, e.g., like a coin that is about 15 nanometers high
and several hundred nanometers across, but its edges may
communicate with an extensive and tortuous diffusion space
defined by the surrounding cells. In other cases, the cleft
architecture itself is extremely complex, with many folds,
twists, and tunnels from one region to another. With present
molecular biological techniques, it is increasingly possible
to determine the density and distribution of receptors and
other important molecules within the cleft and surrounding
diffusion space. It is also increasingly possible to determine
the chemical reaction pathways and rates that determine
how the neurotransmitter molecules interact with the recep-
tors, and how the resulting signal may initiate a cascade of
postsynaptic events. When this information is paired with a
3-D reconstruction of the synaptic surfaces, it becomes pos-
sible to build a highly realistic model of the synapse, which
then can be used in MCell simulations of synaptic transmis-
sion. Quantitative predictions for the synaptic signal and
signal variability then can be compared directly with exper-
imental data, to address such questions as:

1. How does the architecture of the synaptic cleft affect
the size and time course of single and multiple synaptic
signals in different regions of the brain, or at synapses
elsewhere in the body?

2. How do the kinetics and precise localization of trans-
mitter release, receptors, and transmitter removal from
the synaptic cleft influence signal variability and the
spread of transmitter from one synapse to another
(synaptic cross-talk)?

3. How do activity-dependent changes in synaptic struc-
ture and function contribute to cognitive processes
such as learning and memory?

MCell is an outgrowth of combined experimental and
computational studies originally focused on the vertebrate
neuromuscular junction, the synapse between a nerve cell
and a muscle cell (reviewed in [42] and [48]). The neuro-
muscular junction is the first synapse to have been studied
in molecular detail, and over many years a wealth of struc-
tural and physiological data has been amassed. Thus, this
synapse has been particularly well suited to increasingly re-
alistic and ongoing Monte Carlo simulations aimed at:

1. Quantitative reproduction of synaptic signals produced
by individual packets of the neurotransmitter acetyl-
choline [4].

3



2. The sensitivity of synaptic signals to the density and
activity of a synaptic enzyme that binds and destroys
acetylcholine [3].

3. The mechanism by which acetylcholine is released and
its impact on the rising phase of the synaptic signal
[50, 47, 48].

4. The biophysics of acetylcholine receptor activation
and the sensitivity of synaptic signals to temperature
and variation of numerous kinetic parameters [49].

5. The influence of highly realistic synaptic architecture
on signal variability [48].

6. Large-scale parameter sweeps and sensitivity analyses
(Section 2.3).

The earliest projects listed above were conducted with
predecessors of MCell, programs that were tailored to the
problem at hand and could not be applied to larger, more re-
alistic models of the neuromuscular junction or other synap-
tic systems. Such limitations were eliminated for MCell by
generalizing the underlying Monte Carlo algorithms, devel-
oping numerous run-time optimizations (including the use
of spatial subvolumes as outlined in Section 2.1), and cre-
ating the MDL. Present scientific projects in the develop-
ment groups include continuations of those listed above, as
well as new large-scale reconstructions and simulations of
synapses in the mammalian brain, and normal, diseased,
and mutant neuromuscular junctions in mammals, verte-
brates, and invertebrates. In addition, MCell has been in
limited release [29, 30] to a worldwide group (∼25) of
Neuroscience and other research laboratories since 1997
[24, 40, 19, 18], and new algorithms designed to extend
its simulation capabilities remain under active development.
A general release planned within several years will likely
coincide with release of the Grid computation middleware
outlined here.

2.3. MCell Usage Scenarios

Since MCell models are now approaching the level of
structural and biochemical complexity present in living
cells, the models typically contain numerous input param-
eters that can be varied independently. Consequently, sim-
ulations can span an enormous range of computational re-
source requirements – from very simple “look & see” cases
run on a single workstation, to to very large-scale models
with many diffusing molecules and large memory require-
ments distributed across nodes of a parallel machine, and/or
to sweeps of high-dimensional parameter spaces run on the
Grid or a massively parallel supercomputer.

Computational experiments conducted using MCell thus
can be categorized according to the scale of each individ-
ual simulation (number of iterations, memory requirement,

number of diffusing molecules, size of input files, size of
output files, etc.) and the number of individual simulations
to be performed. A number of increasingly common usage
scenarios include:

A. “Look & See” Scenario.
(To paraphrase Yogi Berra – “You can see a lot by
looking”). A single simulation fits in available RAM
and runs in less than one day on a typical workstation.
Only a small number of runs are used to determine the
predicted behavior of the modeled system under some
set of input conditions. Note that the input parame-
ters may include variables related to spatial structure
as well as others related to the chemical reaction net-
work.

B. Parameter Fitting Scenario
A single simulation fits in available RAM and runs in
less than one day on a typical workstation or single
processor of a parallel machine. Depending on the
dimensionality of the parameter space, tens to thou-
sands of runs may be required to identify a set of in-
put parameter values which produce model output that
matches some set of target criteria. As in the “look &
see” scenario, input parameters may include structural
as well as reaction network variables.

C. Parallel MCell Scenarios
A single simulation includes too many molecules or
requires too many iterations to be run in a reasonable
amount of time on a single processor -or- requires too
much RAM to fit on a single workstation. A parallel
version of MCell is used (see below) on a parallel plat-
form in a “look & see”, parameter fitting, or parameter
sweep scenario mode.

D. Parameter Sweep Scenario
The scale of a single simulation is similar to that for the
parameter fitting scenario, but many thousands of runs
are required to map a region of the multidimensional
parameter space encompassed by the model.

As a particular MCell model evolves and matures (due
to feedback between earlier model results and comparisons
made to expectations and results gleaned from the litera-
ture), it is likely that usage will migrate from a “look &
see” scenario (A) to some scale of parameter fitting and/or
a full-blown parameter sweep scenario. If individual runs
fit in available RAM and require less than one day, the pa-
rameter fitting and sweep scenarios (comprising thousands
of independent runs) become well-suited to implementation
on Grid resources. However, consideration should be given
to the size of the input data required and output data gen-
erated by each run. A Grid implementation can gain much

4



efficiency by using resource discovery techniques and sub-
sequently staging large input files on storage resources close
to the scheduled computational resources.

In the case of the parameter fitting scenario (B) the user
generally navigates toward a “best fit” by iterative param-
eter adjustments made according to some potentially ad-
hoc heuristics. Thus a high degree of interactivity between
the user and the computing resources is desirable to maxi-
mize productivity. Under this scenario MCell use becomes
a combination of “high throughput computing” and “on
demand computing”[21], and an MPP/reservation/batch
model is not desirable. Instead, one would prefer even a
dynamic (shrinking/expanding) set of resources where one
can at least be sure that “some” computation will be per-
formed, rather than waiting in a queue for hours only to
obtain intermediate results.

For very large individual simulations a parallel version of
MCell (C) (implemented using PVM or MPI, for example)
must be used to obtain adequate throughput. An initial par-
allel version of MCell currently subdivides the computation
spatially, i.e. each processor is given all of the structural and
molecular components contained within a given subvolume
of the space. Thus the required memory is distributed as
is the computation associated with the diffusing molecules.
Diffusing molecules that cross the spatial partition between
two processors are handled using message passing. The
parallel MCell usage scenarios (item C above), especially
a parallel MCell parameter sweep scenario, will be a future
part of Grid computation projects as the large-scale parallel
resources on the Grid continue to grow.

A concrete example of a parameter sweep scenario (D) is
provided by a recent computational experiment conducted
using BlueHorizon (an 1152 processor IBM SP supercom-
puter at SDSC) and a Linux cluster in Japan (256 933MHz
processors). The experiment involved mapping a portion of
a 4-D kinetic parameter space included within a model of
synaptic transmission at a simplified neuromuscular junc-
tion [5]. The parameter space was sampled at 4704 loca-
tions. To reduce stochastic noise each set of input condi-
tions was repeated 20 times using different streams of pseu-
dorandom numbers, and the results were averaged.

The MDL input files for this simplified neuromuscular
junction model consisted of about 5KB of data. The raw
output of each simulation was a series of numerical values
(a time series) stored in a file of approximately 1MB. Thus,
the experiment produced a total of 94080 raw output files,
or about 94GB, which after averaging condensed into 4704
time series (about 4.7 GB). Subsequent analysis of the aver-
aged time series files then ultimately yielded about 600KB
of additional output data. The averaging and analysis steps
took only a few seconds per task. However, the compute
time for each simulation averaged about 30 minutes, and
varied from 10 seconds to 6 hours as input parameter values

changed dramatically. It is important to note that the input
files to this experiment were very small. In general, input
files to MCell can range from a few KB for simple structures
to tens of MB or more for realistic reconstructions. This
fact combined with the large amount of simulation output
makes databases and effective data management strategies
an important future focus.

3. Challenges to Running MCell Simulations
on the Grid

In this section we identify specific issues and challenges
that must be considered when designing and building user-
level middleware for deploying MCell on the Computa-
tional Grid (scenario D). We describe possible solutions and
highlight shortcomings of currently available Grid software
infrastructures.

3.1. Deployment

Many services and mechanisms are needed for deploying
large-scale applications over widely distributed resources
that are shared and often span multiple administrative do-
mains. We distinguish here 5 types of services that are nec-
essary to deploy MCell over the Grid:

(i) resource discovery,
(ii) software dissemination,
(iii) resource access,
(iv) job control and monitoring,
(v) distributed storage.

Resource discovery allows an application/user to acquire
information about potential resources and is usually im-
plemented by providing well-defined information services.
Software dissemination is enabled by mechanisms for the
user to use for easily installing and running his/her applica-
tion software on remote Grid resources. Resource access in-
volves security issues (authentication/encryption) as well as
mechanisms to place calls to the application software (APIs,
IDLs). Job control and monitoring is used to detect failure
and possibly measure the progress of application tasks.

Finally, distributed storage infrastructures provide means
of managing application data. The efforts underway in the
Grid Forum (GF) activity [28] aim at generating a specifi-
cation for most Computational Grid services, and at making
recommendations about implementation choices. The Grid
Forum standardization effort is a long term process, and our
goal is to deploy MCell simulations now. Consequently, our
approach is to use existing technologies that already provide
prototype implementations of one or more of the aforemen-
tioned services. We expect an easy transition to the standard
Grid infrastructure as it becomes increasingly available.

5



Resource discovery is usually based on deployed and
ubiquitous information services. Globus provides such a
service in the form of the LDAP-based MDS [20]. Le-
gion [25] provides its own information service. Using the
LDAP protocol is the current trend in Network-enabled
Servers projects [14], is advocated by GF, and should be
used by user-level middleware such as the one we envi-
sion for MCell. Software dissemination is not supported
by many Grid research softwares. The Globus Executable
Management (GEM) toolkit component is not available, and
other projects [12, 37] require the user to pre-install soft-
ware “manually” on remote systems. Legion on the other
hand provides a transparent way of matching and upload-
ing binaries to appropriate architectures. This is the sort of
mechanisms that should be used by the middleware when
they become part of a Grid standard.

The security aspect of resource access is PKI-based in
Globus, Legion, and other projects [37]. The Globus Secu-
rity Infrastructure (GSI) [23] is becoming the de-facto stan-
dard implementation and current work focuses on allow-
ing Legion to run on top of GSI. User-level middleware for
MCell will use the GSI. As far as access mechanisms, the
Network-enabled Server paradigm provides the program-
ming model that is the most adapted to MCell’s needs: en-
hanced RPC-style calls, which is higher-level than but sim-
ilar to the Globus GRAM [17] mechanisms. RPC-style pro-
gramming will be the underlying programming model for
MCell on the Grid.

Given the structure of MCell simulations, job control
and job monitoring mechanisms need not be sophisticated.
Simple failure detection tools like the Globus HBM [45] or
the internal mechanisms of projects like NetSolve [12] as
they are available today are quite sufficient. Job monitor-
ing in terms of performance (or measure of progress) would
also be valuable but should probably be implemented as part
of the MCell software itself. Finally, there is a pressing
need for a Grid distributed storage infrastructure. MCell
manipulates tremendous amounts of data that are scattered
over a large number of files. It can therefore benefit from
mechanisms to name, locate, duplicate, and efficiently dis-
seminate that data. The infrastructure proposed in [16]
promises to address all these issues but none of the currently
available projects/protocols provides such solutions. At the
moment, an implementation of user-level middleware for
MCell needs to leverage multiple technologies [22, 39, 32]
and must implement its own data abstraction layer.

Section 4 presents a prototype user-level middleware for
PSAs, APST, and details the design and implementation
choices that prevailed for deploying applications with cur-
rent Grid technology. The experience gained while imple-
menting APST should be profitable to the design of a next-
generation middleware specifically targeted to MCell.

3.2. Scheduling

MCell simulations are structured as sets of Monte-Carlo
simulations, implying that tasks are independent, and there-
fore indicating that scheduling should be straightforward.
However, the problem of scheduling sets of independent
tasks onto heterogeneous sets of processors has been iden-
tified as NP-complete [34] and substantial research work
has been devoted to design suitable heuristics [26, 33, 34,
36, 11]. These heuristics generally fall into two categories:
those which use self-scheduling, and those which use per-
formance prediction. While the former are easy to imple-
ment and extremely adaptive, the latter aim at making a
plan for the application execution and should be able to take
advantage of idiosyncrasies of the application and the com-
puting environment.

In the case of MCell, two additional aspects of the
structure of simulations complicate the scheduling problem.
First, independent tasks may share large input files and, de-
pending on the available compute and storage resource, it
may become critical to place such files in strategic locations
and then to co-locate computation and data. Second, multi-
ple post-processing stages of the raw output data are needed
to present the MCell user with synthesized results that are
needed for scientific interpretation. As seen in Sections 2.2
and 2.3, the post-processing often includes averaging multi-
ple time series that can reside in large output files. It might
then be desirable that these files be located in proximity to
each other and an effective scheduling algorithm should en-
sure that post-processing is done efficiently.

Work in [13] addressed the question of scheduling PSAs
over a heterogeneous Grid that consists of multiple sites
that contain compute resources (hosts) and a data reposi-
tory that can be shared among those resources (e.g. a disk
over NFS). More specifically, the focus in that paper was
to determine which heuristics are appropriate to ensure that
input files are shared efficiently among application tasks.
Simulation results showed that adaptive versions of heuris-
tics using performance prediction are the best solution even
in the presence of prediction inaccuracies. In particular,
the XSufferage heuristic (which schedules the task first that
would ”suffer” most if scheduled badly) is very promis-
ing. An implementation of these heuristics is provided in
the APST project (see Section 4) and requires support for
resource performance monitoring and forecast. Our ex-
periments with MCell on real testbeds used the Network
Weather Service (NWS) [52] as it is currently deployed
and used in multiple institutions and provides performance-
efficient predictions.

The work presented in [13] is limited in its application
to MCell in two ways. First, the scheduling heuristics are
not designed to take into account the output post-processing
stage and to date, there has been no evaluation of their be-

6



haviors in such a scenario. Second, the model for the com-
putational environment is restricted to one data repository
per site, with no file exchanges among sites (the author-
itative source of application data files is the user’s host).
To accommodate MCell simulations on real Grid testbeds
we must design new heuristics that take into account out-
put post-processing and evaluate them in simulation with a
more general setting where data repositories can be located
anywhere, and where file transfers among any repositories
are allowed.

To address this, we are currently considering two ap-
proaches. A straightforward approach would be to mod-
ify the existing heuristics so that application tasks generat-
ing output files that need to be combined are scheduled on
compute resources “close” to a single data-repository. This
however does not provide a general solution that will be
effective in multiple Grid settings or for all application sce-
narios (e.g. “on demand” computing). It is the case that the
averaging of MCell time series is an associative operation
and can be therefore performed in a “divide-and-conquer”
fashion. An alternate approach is then to perform iterative
post-processing of the output according to the respective lo-
cation of output files. These two approaches are fundamen-
tally different in that the former aims at imposing the lo-
cation of output files in advance, whereas the latter tries to
optimize output post-processing given the location of out-
put files. Our future work will be focused on evaluating
these two approaches as well as designing and evaluating
heuristics that provide a middle-ground.

A current shortcoming of current Grid monitoring sys-
tems is that network topologies are usually not accurately
taken into account when providing performance metrics
concerning point-to-point data transfer rates. Typically, the
monitoring systems perform series of point-to-point bench-
marks independently which does not reflect possible link
contention. There is no indication of what data trans-
fer rates would be observed if simultaneous data transfers
are initiated. Some projects [35, 43] address the model-
ing/monitoring link contention but are not widely deployed.
Unfortunately, the more general Grid model and the model-
ing of associative collective operation that we discussed ear-
lier must rely on network performance evaluations that take
link-contention into account. Even though the work in [13]
presents an adaptive scheduling algorithm which is toler-
ant to performance prediction inaccuracies, we expect that
a reasonable estimation of the impact of link contention on
data transfer rates will be necessary for effectively schedul-
ing the output post-processing stages in MCell. Our first
step will be to use simulation to evaluate new heuristics for
scheduling MCell with output post-processing and over a
general Grid topology. We then plan to implement the best
heuristics as part of a user-level middleware such as the one
presented in Section 4. That implementation will initially

use ad-hoc techniques to assess link contention, until more
sophisticated Grid monitoring services are deployed.

3.3. User Interface

The ideal user interface for MCell simulations must en-
compass each of the four steps outlined in Section 2.1,
which means it must provide an interactive visual environ-
ment for model creation and editing, simulation control, and
post-processing of multi-dimensional output data. For Grid-
based computation, it must also provide interactive access
to the middleware tools that will deploy and monitor large
sets of MCell tasks running under the Parameter Fitting and
Parameter Sweep usage scenarios outlined in Section 2.3.

Not surprisingly, the actual existing user interface is
fairly far removed from the ambitious ideal outlined above,
and this reality arises largely from three factors [48]: first,
the relatively recent expansion of MCell’s algorithms and
optimizations to handle large-scale polygon mesh objects,
and therefore highly realistic cellular models; second, a
general lack of surface reconstruction software well-suited
to the highly accurate and unflawed large-scale tessellations
required by MCell models; and third, the general complexi-
ties and computational load imposed by large-scale interac-
tive 3-D rendering. Aside from MDL text files, the existing
interface thus comprises a loosely knit collection of open
source, custom written, and commercial tools and scripts
for 2-D pixmap and vector graphics, surface generation and
optimization, interactive 3-D rendering of down-sampled
models, batch-mode rendering of full-scale models and time
series animations, and interactive multi-dimensional visual-
ization of post-processed output results.

To assimilate the diverse aspects of an MCell user in-
terface into one cohesive yet flexible package, we plan to
use OpenDX [31], an open source outgrowth of IBM Data-
Explorer software. OpenDX is a powerful interactive anal-
ysis and rendering tool for multidimensional datasets, and
is based on a very general data model for volumes, sur-
faces, and arbitrary data properties and interdependencies,
i.e., is highly compatible with an emerging and expand-
ing MCell data model for cell surfaces and surface prop-
erties. OpenDX also includes an extensive visual program-
ming environment that can be used as a graphical interface
builder and to link operations to external applications (e.g.,
the APST daemon discussed in Section 4), and already has
been used for many of the most important stages of MCell
model design. To whatever extent the native visual pro-
gramming toolset proves inadequate for a general MCell
interface, custom modules can be written and added, and
if necessary, a Java-based front-end can be employed for
further customization.

As explained in Section 2.3, MCell-specific data man-
agement strategies are needed for maintaining databases of

7



both MCell input and output data. Ideally, the MCell user
interface would allow the user to easily archive, access, and
transform that data. We are currently refining the data man-
agement model for generic MCell simulations and imple-
menting that model in structured databases. We will then
write an OpenDX module that interacts with the databases.
Ultimately, we envision the use of OpenDX as a unified
tool for the entire life-cycle of an MCell project: input data
preparation, simulation runs for the four scenarios described
in Section 2.3, output data processing, analysis and visual-
ization.

4. A Prototype User-Level Middleware: APST

In this section we introduce the AppLeS Parameter
Sweep Template (APST), a prototype user-level middleware
project that targets PSAs in Computational Grid environ-
ments. An experimental evaluation of APST is presented
in [15]. The goal of APST is to provide the end-user with
easy and efficient access to many Grid resources that are
currently available through various software infrastructures.
Performance is the responsibility of an embedded scheduler
that works “behind the scene” on the user’s behalf. Given
these goals, we highlight relevant aspects of the APST soft-
ware design and describe the current scheduling algorithm
implementations.

The APST software is composed of a client and a
daemon. The client is an executable that takes various
command-line arguments and can be used by the user to
interact with the daemon: submitting new computational
tasks, cancelling tasks previously submitted, and inquiring
about the status of an ongoing simulation. To submit new
tasks, the user must provide a task description file which
contains one task description per line. Each task descrip-
tion specifies which program to run as well as the required
command-line arguments, the location of input files, and
where output files should be created (i.e. written to local
disks or left in place in remote storage).

The APST daemon consists of four distinct sub-systems:
a Controller, a Scheduler, an Actuator, and a Meta-data
Bookkeeper. Each sub-system defines its own API. Those
APIs are used for communication/notification among sub-
systems. Providing multiple implementations of these APIs
makes it possible to plug in different functionalities and al-
gorithms into each APST sub-system. For instance, writing
multiple implementations of the Scheduler’s API is the way
to provide multiple scheduling algorithms.

The Scheduler is the central component of the APST
daemon. Its API is used for notification of events con-
cerning the application’s structure (new tasks, task cancella-
tions), the status of computational resources (new disk, new
host, host/disk/network failures), and the status of running
tasks (task completions or failures). The behavior of the

scheduler is entirely defined by the implementation of its
API. The Controller relays information between the client
and the daemon and notifies the Scheduler of new tasks to
perform or of task cancellations. It uses the Scheduler’s API
and communicates with the client using a simple wire pro-
tocol. The Actuator implements all interaction with Grid
infrastructure software for accessing storage, network, and
computation resources. It also interacts with the Grid secu-
rity infrastructure on behalf of the user when needed. There
are two parts to the Actuator’s API: one for file transfers
and storage, and one for task launching, monitoring, and
cancellation. The Scheduler can place calls to both these
APIs to make the Actuator implement a given schedule on
Grid resources. The Actuator’s implementation makes use
of standard interfaces to Grid infrastructure softwares to in-
teract with resources. Each sub-system API consists of less
than 15 functions.

Our design ensures that it is possible to mix and match
different implementations of the internal APIs. In particu-
lar, the implementation of a given scheduling algorithm is
completely isolated from the actual Grid software used to
deploy the application’s tasks. The intent of our design is
that a constant control cycle between the Scheduler and the
Actuator is necessary for effective scheduling. The Sched-
uler periodically polls the Actuator for task completions,
failures, or other events (e.g. newly available computing
resources). This leads the Actuator to place calls to the
Scheduler’s API to notify the Scheduler of these events. The
Scheduler has then the opportunity to react by making deci-
sions and placing calls to the Actuator’s API. Such a design
makes it very easy to implement straightforward algorithms
like a self-scheduled workqueue, as well as more complex
algorithms as the one that were introduced in [13].

An prototype implementation of APST was demon-
strated during the SuperComputing’99 conference (running
over 200 hosts all over the world). A beta version has
been released and is being tested and evaluated for differ-
ent applications and in various testbeds (e.g. NASA’s IPG).
Interfaces to Globus’ GRAM [17] and GASS [22], Net-
Solve [12], IBP [39], and the NWS [52] have been imple-
mented. A Condor [6] interface is underway. The sched-
uler can use six different scheduling algorithms. Among
those are two self-scheduling algorithms: wq which is a
standard workqueue, and wq+ which is a workqueue with
task duplication and task priorities. The four other schedul-
ing algorithms use performance predictions. Three of them
use the heuristics presented in [36] (MaxMin, MinMin, and
Sufferage) and one uses a new heuristic, XSufferage, that
was introduced in [13]. The overall design provides great
flexibility as it is possible to mix and match implementa-
tions. The APST daemon can simultaneously use Globus
and NetSolve servers for tasks, as well as IBP, GASS, and
NFS servers for storage. Note that using distributed stor-

8



Table 1. Available implementations of compo-
nents of the APST daemon

APST Component Available Implementations

Actuator/Data GASS, IBP, NFS, NetSolve
Actuator/Computation GRAM, NetSolve, (Condor)
Meta-Data Bookkeeper NWS
Scheduler wq, wq+, MinMin, MaxMin,

Sufferage, XSufferage

age systems as GASS and IBP allows for more flexible
scheduling of tasks and data and thereby makes it worth-
while to use scheduling algorithms based on performance
prediction [13]. Table 1 shows a summary of the available
APST module implementations (ones that are underway are
shown in parentheses).

APST in its current form is suitable for running large-
scale MCell computations. In fact, it was used successfully
to run MCell simulations (15,000 tasks, 20GB of output
data) and proved very valuable in that it hides all logistic
details from the user while ensuring reasonable schedul-
ing. The testbeds being used for those experiments were
large and distributed enough to observe the respective per-
formance of different scheduling algorithms [15]. Our goal
is to build on APST to generate MCell-specific user-level
middleware. That middleware will focus on those issues
highlighted in Section 3 that are not currently addressed by
APST: scheduling for output-post processing and for more
general Grid topologies; and MCell-specific user interface
with visualization capabilities. As seen in Section 6, we are
currently working on such a middleware project that will
also provide computational steering capabilities.

5. Related Work

Parameter Sweep applications occur in many fields of
science and engineering. A few project provide the nec-
essary computing infrastructure to deploy these applica-
tions on large sets of resource. For example is the work
in [8] describes Condor [6] support for Monte-Carlo simu-
lations. In terms of Grid middleware, we gave the exam-
ple of APST [15], and one can also cite Nimrod/G [2] and
SciRun [38]. Nimrod/G is related the most to the work de-
scribed in this paper as it targets PSAs. It provides a generic
user interface that is more evolved than the one provided by
APST. There are however two major differences between
Nimrod/G and our work. First, the scheduling approach in
Nimrod/G does not take into account the co-scheduling of
computation and data as it does not use distributed storage
infrastructures. Consequently, the scheduling algorithms in

Nimrod/G do not specifically address the post-processing
of large amount of application output data such as what is
generated by MCell simulations. Second, there is no built-
in way to add an application-specific user interface on top
of Nimrod/G and the existing interface does not meet the
MCell requirements described in Section 3.3. By contrast,
the project described in this paper focuses on scheduling
algorithms and on an MCell user interface that will be de-
veloped in collaboration with MCell developers and users.

SciRun does not specifically target PSAs but provides
support for runtime visualization of scientific simulations.
In addition it addresses computational steering issues which
is not currently done in either Nimrod or APST. SciRun will
be a great source of inspiration to develop the proposed user
interface. Furthermore, our ultimate goal is to implement
a middleware that has the capability to steer MCell com-
putations and we will additionally benefit from the SciRun
experience.

6. Conclusion and Future Work

The Computational Grid [21] is an attractive platform for
running large scale application as it provides tremendous
compute, networking, and storage resources. However, its
complexity makes it difficult for end-users (e.g. domain sci-
entists) to deploy their applications. It is thus necessary
to develop User-Level Middleware which performs logis-
tical tasks on behalf of the user, provides an attractive user
interface and promotes performance by using appropriate
scheduling algorithms. In this paper, we focused on mid-
dleware that is specifically targeted to support performance-
efficient, large-scale runs of MCell, a biology parameter
sweep application. After introducing MCell and its compu-
tational structure, we identified requirements for the desired
usage scenario of MCell on the Grid. We gave implementa-
tion solutions given the current state-of-the-art of Grid tech-
nology. We then described preliminary work on a middle-
ware project that targets generic parameter sweep applica-
tions: APST. We pointed out what additional features and
capabilities are needed for MCell-specific middleware and
explained how the work in APST can be re-used to that end.
The two main areas to expand on are scheduling and user
interface in order to meet MCell’s specific requirements.

In addition, ongoing research involving the authors as
well as a number of other researchers aim at providing the
additional capability of computational steering for MCell.
That research will be the object of a future paper when
a first prototype is available. Middleware which includes
the functionality described herein as well as computational
steering will make MCell truly usable on the Grid and pro-
vide its users with tremendous computational power, as well
as a new level of convenience and feedback. We hope that
MCell with this functionality will become one of the first

9



Grid applications to be routinely deployed and widely used
by a broad community of users and domain scientists, and
will make possible the discovery of a new generation of dis-
ciplinary results.

References

[1] D. Abramson, M. Cope, and R. McKenzie. Modeling Pho-
tochemical Pollution using Parallel and Distributed Comput-
ing Platforms. In Proceedings of PARLE-94, pages 478–489,
1994.

[2] D. Abramson, J. Giddy, I. Foster, and L. Kotler. High Per-
formance Parametric Modeling with Nimrod/G: Killer Ap-
plication for the Global Grid ? In Proceedings of the In-
ternational Parallel and Distributed Processing Symposium,
May 2000. to appear.

[3] L. Anglister, J. R. Stiles, and M. M. Salpeter. Acetyl-
cholinesterase density and turnover number at frog neuro-
muscular junctions, with modeling of their role in synaptic
function. Neuron, 12:783–794, 1994.

[4] T. M. Bartol, B. R. Land, E. E. Salpeter, and M. M. Salpeter.
Monte Carlo simulation of miniature endplate current gen-
eration in the vertebrate neuromuscular junction. Biophys.
J., 59(6):1290–1307, 1991.

[5] T. M. Bartol, T. J. Sejnowski, B. R. Land, E. E. Salpeter,
and M. M. Salpeter. A sensitivity analysis of chemical ki-
netics parameters for the neuromuscular junction. In Soc.
Neurosci. Abstr., 2000.

[6] J. Basney and M. Livny. Deploying a High Throughput
Computing Cluster. In High Performance Cluster Comput-
ing, volume 1, chapter 5. Prentice Hall, May 1999.

[7] J. Basney, M. Livny, and P. Mazzanti. Harnessing the Ca-
pacity of Computational Grids for High Energy Physics.
In Conference on Computing in High Energy and Nuclear
Physics, 2000.

[8] J. Basney, R. Raman, and M. Livny. High-throughput Monte
Carlo. In Proceedings ot the Ninth SIAM Conference on
Parallel Processing for Scientific Computing, March 1999.

[9] F. Berman. The Grid, Blueprint for a New computing Infras-
tructure, chapter 12. Morgan Kaufmann Publishers, Inc.,
1998. Edited by Ian Foster and Carl Kesselman.

[10] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-Level Scheduling on Distributed Heteroge-
neous Networks. In Proc. of Supercomputing’96, Pittsburgh,
1996.

[11] R. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran,
A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen,
and R. Freund. A Comparison Study of Static Mapping
Heuristics for a Class of Meta-tasks on Heterogeneous Com-
puting Systems. In Proceedings of the 8th Heterogeneous
Computing Workshop (HCW’99), pages 15–29, Apr. 1999.

[12] H. Casanova and J. Dongarra. NetSolve: A Network Server
for Solving Computational Science Problems. The Inter-
national Journal of Supercomputer Applications and High
Performance Computing, 11(3):212–223, 1997.

[13] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman.
Heuristics for Scheduling Parameter Sweep Applications

in Grid Environments. In Proceedings of the 9th Hetero-
geneous Computing Workshop (HCW’00), pages 349–363,
May 2000.

[14] H. Casanova, S. Matsuoka, and J. Dongarra. Network-
Enabled Server Systems: Deploying Scientific Simulations
on the Grid . 2001. submitted to HPC’01.

[15] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
AppLeS Parameter Sweep Template: User-Level Middle-
ware for the Grid. In Proceedings of SuperComputing 2000
(SC’00), Nov. 2000. to appear.

[16] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Datasets. the Journal of Network and Computer Applica-
tions, 2000. to appear.

[17] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke. A Resource Management
Architecture for Metacomputing Systems. In Proceedings
of IPPS/SPDP’98 Workshop on Job Scheduling Strategies
for Parallel Processing, 1998.

[18] D. Egelman, R. King, and P. Montague. Interaction of nitric
oxide and external calcium fluctuations: a possible mecha-
nism for rapid information retrieval. Progress in Brain Re-
search, 118:199–211, 1998.

[19] D. Egelman and P. Montague. Computational proper-
ties of peri-dendritic calcium fluctuations. J. Neurosci.,
18(21):8580–8589, 1998.

[20] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke. A Directory Service for Config-
uring High-Performance Distributed Computations. In Pro-
ceedings of the 6th IEEE Symposium on High-Performance
Distributed Computing, pages 365–375, 1997.

[21] I. Foster and C. Kesselman, editors. The Grid, Blueprint for
a New computing Infrastructure. Morgan Kaufmann Pub-
lishers, Inc., San Francisco, USA, 1998.

[22] I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS:
A Data Movement and Access Service for Wide Area Com-
puting Systems. In Proceedings of the Sicth workshop on
I/O in Parallel and Distributed Systems, May 1999.

[23] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Secu-
rity Architecture for Computational Grids. In Proceedings
of the 5th ACM Conference on Computer and Communica-
tions Security, pages 83–92, 1998.

[24] J. Gieger, A. Roth, B. Taskin, and P. Jonas. Glutamate-
mediated synaptic excitation of cortical interneruons. In
P. Jonas and H. Moyner, editors, Handbook of Experimen-
tal Pharmacology, Retinoids, Ionotropic glutamate recep-
tors in the CNS, volume 141, pages 363–398, Berlin, 1999.
Springer-Verlag.

[25] A. Grimshaw, F. Ferrari, A. Knabe, and M. Humphrey.
Wide-Area Computing: Resource Sharing on a Large Scale.
32(5), May 1999.

[26] T. Hagerup. Allocating Independent Tasks to Parallel Pro-
cessors: An Experimental Study. Journal of Parallel and
Distributed Computing, 47:185–197, 1997.

[27] S. Hill. Spatial and temporal processing in thalamocorti-
cal neural networks. PhD thesis, University of Lausanne,
Switzerland, 1999.

[28] http://www.gridforum.org.

10



[29] http://www.mcell.cnl.salk.edu.
[30] http://www.mcell.psc.edu.
[31] http://www.opendx.org.
[32] http://www.webdav.org.
[33] S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein. Load-

sharing in heterogeneous systems via weighted factoring. In
Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 318–328, Jun 1996.

[34] O. H. Ibarra and C. E. Kim. Heuristic algorithms for
scheduling independent tasks on nonindentical processors.
Journal of the ACM, 24(2):280–289, Apr. 1977.

[35] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A Resource Query Interface
for Network-Aware Applications. In Proceedings of the 7th
IEEE Smposium on High-Performance Distributed Comput-
ing, July 1998.

[36] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. Freund. Dynamic Matching and Scheduling of a
Class of Independent Tasks onto Heterogeneous Comput-
ing Systems. In 8th Heterogeneous Computing Workshop
(HCW’99), pages 30–44, Apr. 1999.

[37] H. Nakada, M. Sato, and Sekiguchi. Design and Implemen-
tations of Ninf: towards a Global Computing Infrastructure.
Future Generation Computing Systems, Metacomputing Is-
sue, 1999.

[38] S. Parker, M. Miller, C. Hansen, and C. Johnson. An inte-
grated problem solving environment: The SCIRun compu-
tational steering system. In Proceedings of the 31st Hawaii
International Conference on System Sciences (HICSS-31),
vol. VII, pages 147–156, January 1998.

[39] J. Plank, M. Beck, W. Elwasif, T. Moore, , M. Swany, and
R. Wolski. The Internet Backplane Protocol: Storage in the
Network. In Proceedings of NetSore’99: Network Storage
Symposium, Internet2, 199.

[40] R. Rao-Mirotznik, G. Buchsbaum, and P. Sterling. Trans-
mitter concentration at a three-dimensional synapse. J. Neu-
rophysiol., 80(6):3163–3172, 1998.

[41] S. Rogers. A Comparison of Implicit Schemes for the In-
compressible Navier-Stokes Equations with Artificial Com-
pressibility. AIAA Journal, 33(10), Oct. 1995.

[42] M. M. Salpeter. The Vertebrate Neuromuscular Junction,
pages 1–54. Alan R. Liss, Inc., New York, 1987. Edited by
Salpeter, M. M.

[43] G. Shao, F. Breman, and R. Wolski. Using Effective
Network Views to Promote Distributed Application Perfor-
mance. In Proceedings of the 1999 International Conference
on Parallel and Distributed Processing Techniques and Ap-
plications, 1999.

[44] N. Spring and R. Wolski. Application level scheduling:
Gene sequence library comparison. In Proceesings of
ICS’98, July 1998.

[45] P. Stelling, I. Foster, C. Kesselman, C. Lee, and G. von
Laszewski. Fault Detection Service for Wide Area Dis-
tributed Computations. In Proceedings of the 7th IEEE Sym-
posium on High Performance Distributed Computing, pages
268–278, 1998.

[46] J. R. Stiles and T. M. Bartol. Monte Carlo methods for sim-
ulating realistic synaptic microphysiology using MCell. In

E. DeSchutter, editor, Computational Neuroscience: Real-
istic Modeling for Experimentalists, Boca Raton, 2001, in
press. CRC Press.

[47] J. R. Stiles, T. M. Bartol, E. E. Salpeter, and M. M. Salpeter.
Monte Carlo simulation of neurotransmitter release using
MCell, a general simulator of cellular physiological pro-
cesses. In J. M. Bower, editor, Computational Neuroscience,
pages 279–284, New York, NY, 1998. Plenum Press.

[48] J. R. Stiles, T. M. Bartol, M. M. Salpeter, E. E. Salpeter,
and T. J. Sejnowski. Synaptic variability: new insights from
reconstructions and Monte Carlo simulations with MCell.
In W. M. Cowan, T. C. Südhof, and C. F. Stevens, editors,
Synapses, pages 681–731, Baltimore, 2001. Johns Hopkins
University Press.

[49] J. R. Stiles, I. V. Kovyazina, E. E. Salpeter, and M. M.
Salpeter. The temperature sensitivity of miniature endplate
currents is mostly governed by channel gating: evidence
from optimized recordings and Monte Carlo simulations.
Biophys. J., 77:1177–1187, 1999.

[50] J. R. Stiles, D. Van Helden, T. M. Bartol, E. E. Salpeter,
and M. M. Salpeter. Miniature endplate current rise times

�
100 � s from improved dual recordings can be modeled

with passive acetylcholine diffusion from a synaptic vesicle.
Proc. Natl. Acad. Sci. U.S.A., 93:5747–5752, 1996.

[51] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Na-
gashima. Overview of a Performance Evaluation System
for Global Computing Scheduling Algorithms. In Proceed-
ings of the 8th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC8), pages 97–104,
Aug 1999.

[52] R. Wolski. Dynamically Forecasting Network Perfor-
mance Using the Network Weather Service. In 6th High-
Performance Distributed Computing Conference, pages
316–325, August 1997.

11


